1 Introduction

The Apogee Alta camera drivers are ActiveX drivers. It turned out to be hard to make them work
under Borland C++. The data acquisition program Vision is written in Borland C++ and needs
access to the Alta camera. The solution to this problem is ApogeeServer. It is a small Visual C++
program which communicates on one side with the Alta camera using the ActiveX drivers delivered
with the camera and on the other side with Vision over ethernet using TCP/IP. The program can
easily be modified to support other camera systems than the Apogee Alta and make these cameras
accessible to Vision as long as Visual C++ drivers are delivered with the camera.

2 Installation of the Alta system

The Alta comes delivered with drivers. Call the install batch file delivered with them. Sometimes the
batch file doesn’t work correctly and you have to manually do what it intends to do: copying the DLL
and registering it with regsvr32. Power the Alta up. Wait until the LEDs blink! Hook the Alta up to
your system. Windows asks for some drivers to be installed. Use Maxim, which is delivered with the
Alta to test if it works. Eventually switching the Alta off and on, rebooting and verifying that the
DLL and the .SYS file are at the correct place and registered should make everything work.

Probably you need to fabricate an external trigger cable. It is a 8pin mini din mal plug, like the
Apples serial port connector. The external trigger has to be hooked up on pin 1 and its ground to pin
8.

I/0 for Alta

Pin 1 - Trigger Input

Pin 2 - Shutter Output

Pin 3 - ShutterStrobe Output

Pin 4 - External Shutter Input

Pin 5 - External Readout Input

Pin 6 - Timer Pulse Input

Pin 7 is 12V from the camera head input
Pin 8 is ground.

Connector pin layout:

12
34 5
678

There is a bigger gap between

pin 4 and 5 than anywhere else.
Below pin 7 and to the sides of

pin 1 and 2 are mechanical markers
helping to orient the plug correctly

3 User interface

The user interface displays the system status in a textbox to the left and has menu options on buttons
to the right. The "Expose” button starts and internally triggered exposure. The "10 setup”, ”"LED



setup”, ” Temperature” and ”Search” buttons call the drivers corresponding dialog boxes. The ”Test
trigger” button switches the trigger line to be an output and toggles it a few times slowly from low
to high to test the external trigger cable. The ”Expose Ext” button starts an externally triggered
exposure”. The ”Debug start” button starts registering the TCP/IP communication in the file ”c:
Debug.dat”. ”Debug stop” stops this. ”Exit” quits the program.

4 Communication with Vision

Here is a transcript of the TCP/IP communication with Vision. The first column is the time of
communication in milliseconds, the second the direction (”jj” means from Vision to Apogeeserver)
and the third is the text actually send. In fact each text send starts with ”*” and ends with ”#”, but

these markers have been left out ini this protocol.

5902296 << Parameters
5902437 << 0002

5902437 << 0002

5902437 << 0004

5902437 << 1019

5902437 << 0004

5902437 << 1019

5902437 << 0020

5902437 << -030

5902437 << 0001

5902437 << 0000

5903843 << Image

5903968 << 0003

5914484 >> Ready

5914484 << Ready

5914500 >> 516128

5914500 >> SendData 516128
5914718 << Ready

5914718 >> 516128

5914718 >> SendData 516128
5914937 << Ready

5914937 >> 516128

5914953 >> SendData 516128

The first command ”Parameters” tells Apogeeserver that the image parameters will be send. They
follow next in this order: BinningX, BinningY, XMin, XMax, YMin, YMax, exposure time in millisec-
onds, goal temperature of CCD, external trigger (1=external, O=internal), and the wait time between
images in a series of images to be taken.

The next command ”Image” tells Apogeeserver to take Images. The number of images to be taken
is send as parameter. Apogeeserver answers with ”Ready”. Vision tells Apogeeserver with ”Ready”
that it is ready to receive data. Apogeeserver then send the number of bytes in the picture and then
the data of the pixture.



5 Classes

The application is initialized in CApogeeServer::InitInstance(). If you want to change the IP port
(normally 703) you do it here. The camera is represented by CApogee and initialized with CA-
pogee::InitCamera(). Here you can modify the startup behavior eg. define what the LEDs do or switch
off the fans. The user dialog is CApogeeServerDlg and the TCP/IP interface is CTCPIPServer.

6 Events

Two sorts of events can trigger something to happen. Either the user pushes a button. For ex-
ample the ”Expose” button calls CApogeeServerDlg::OnExpose(). This method then calls the ap-
propriate functions of CApogee. The other is that Vision sends a command. They are received
in CTCPIPServer::ProcessMessage(). In dependance of the message functions of CTCPIPServer
executing the message are called. You can add new commands here if you need to. Look how
CTCPIPServer::SetParameters or Takelmage communicate with Vision and CApogee to learn how to
add new functionality. Essentially you read parameters from Vision using the ReadInt function and
you pass those parameters on to CApogee.

7 Special remarques

Our Alta camera driver has a problem accepting 0 as value for yMin. It always converts it to 1.
Combined with binning this makes it necessary for us to start not with line 0 but line 4. The Alta
driver also sometimes stalled after an image with binning. That’s what the ResetSystem() commands
are for. They avoid this situation to occur.



